1 Runoff Calculation of Existing Catchment

1.1 Runoff Estimation

1.1.1 Rational method is adopted for estimating the designed run-off

Q=0.278 C × I × A

Table 1: Runoff Coefficients

Surface Characteristics	Runoff Coefficient
Asphalt	0.70-0.95
Concrete	0.80-0.95
Brick	0.70-0.85
Grassland (Heavy Soil)	
Flat	0.13-0.25
Steep	0.25-0.35
Grassland (Sandy Soil)	
Flat	0.05-0.15
Steep	0.15-0.2

Assuming that:

- I. The total existing catchment area is about 16,931m²;
- II. Approximately 4,9191 m² is hard paved, and therefore the value of run-off co-efficient (k) is taken as 0.95, and approximately 12,012m² is steep grassland, and therefore the value of run-off co-efficient (k) is take as 0.25.
- III. The areas of the existing catchment are shown in Figure 1.

Difference in Land Datum	=	71.2m –29.1m = 42.1m
L	=	179.7m
Average fall	=	23.4m in 100m

According to the Brandsby-Williams Equation adopted from the "Stormwater Drainage Manual – Planning, Design and management" published by the Drainage Services Department (DSD),

Time of Concentration (t _c)	=	0.14465[L/(H ^{0.2} ×A ^{0.1})]
t _c	=	0.14465[179.7/(23.4 ^{0.2} ×16,931 ^{0.1})]
t _c	=	5.23 minutes

The rainfall intensity *i* is determined by using the Gumbel Solution:

$$i = \frac{a}{(td+b)^c}$$

Where *I* td = Extreme mean intensity in mm/hr

= Duration in minutes (td≤240)

a, b, c = Storm constants given in the table below

Table 2: Storm Constants for Different Return Periods of North District Area

Return Period	2	5	10	20	50
T(years)					
а	1004.5	1112.2	1157.7	1178.6	1167.6
b	17.24	18.86	19.04	18.49	16.76
С	0.644	0.614	0.597	0.582	0.561

i i	= =	1167.6/[5.23+16.76] ^{0.561} 206.2mm/hr
By Rational Method, Q	=	0.25× 206.2mm/hr × 12,012/3600 + 0.95× 206.2mm/hr × 4.919/3600
Q	=	440l/s = 0.440m ³ /s = 26,385 l/min

- 2 Runoff Calculation of Additional Discharge from The Site and External Catchment to 0.7m Diameter Pipe
- 2.1 Runoff Estimation
- 2.1.1 Rational method is adopted for estimating the designed run-off

Table 1: Runoff Coefficients

Surface Characteristics	Runoff Coefficient
Asphalt	0.70-0.95
Concrete	0.80-0.95
Brick	0.70-0.85
Grassland (Heavy Soil)	
Flat	0.13-0.25
Steep	0.25-0.35
Grassland (Sandy Soil)	
Flat	0.05-0.15
Steep	0.15-0.2

Assuming that:

- I. The internal catchment discharged into the Existing External Catchpit with Sandtrap #2, and thus does not pass through the 0.7m diameter pipe and will not be counted in this estimation
- II. Only the external catchment area from the site will be discharged into the 0.7m Diameter pipe and will thus be counted
- III. The total external catchment area is about 2,425 m², as shown in Figure 2;
- IV. Approximately 2,261 m² is hard paved, and therefore the value of run-off co-efficient (k) is taken as 0.95, and approximately 164m² is steep grassland, and therefore the value of run-off co-efficient (k) is take as 0.25.

Difference in Land Datum	=	40m –29.5m = 10.5m
L	=	107.8m
Average fall	=	9.74m in 100m

According to the Brandsby-Williams Equation adopted from the "Stormwater Drainage Manual – Planning, Design and management" published by the Drainage Services Department (DSD),

Time of Concentration (t _c)	=	0.14465[L/(H ^{0.2} ×A ^{0.1})]
t _c	=	0.14465[107.8/(9.74 ^{0.2} ×2,425 ^{0.1})]
t _c	=	4.54 minutes

The rainfall intensity *i* is determined by using the Gumbel Solution:

$$i = \frac{a}{(td+b)^c}$$
Where I = Extreme mean intensity in mm/hr
 td = Duration in minutes (td ≤ 240)
 a, b, c = Storm constants given in the table below

Table 2: Storm Constants for Different Return Periods of North District Area

Return Period	2	5	10	20	50
T(years)					
а	1004.5	1112.2	1157.7	1178.6	1167.6
b	17.24	18.86	19.04	18.49	16.76
С	0.644	0.614	0.597	0.582	0.561

i i	= =	1167.6/[4.54+16.76] ^{0.561} 209.9mm/hr
By Rational Method, Q	=	0.95× 209.9mm/hr × 2,261/3600
Q	=	+0.2× 209.9mm/hr × 164/3600 127l/s = 0.127m ³ /s = 7,631 l/min

3 Checking the Capacity of the Existing 0.7m Diameter Drainage Pipes Manning Equation

$$V = \frac{HMD^{\frac{2}{3}} \times S_{f}^{0.5}}{n}$$
Hydraulic Mean Depth (HMD) = 0.291 × D
HMD = 0.291 × 0.7
HMD = 0.204
n = 0.013 s/m^{1/3}
for good uncoated cast iron pipe
(Table 13 of Stormwater Drainage Manual)
V = [0.204^{2/3}] \times [0.01^{0.5}]/0.013
V = 2.67m/sec

Maximum Capacity $Q_{Max} = V \times A$

А	=	πR^2
А	=	$\pi 0.35^{2}$
А	=	0.385m ²
\mathbf{Q}_{Max}	=	2.67m/sec × 0.385m ²
\mathbf{Q}_{Max}	=	1.03m ³ /sec
1.03m ³ /sec	>	(0.440+0.127)m ³ /sec
1.03m ³ /sec	>	0.567m ³ /sec
Q _{Max}	>	Q

4 Conclusion

Based on the Above calculations, the existing pipe has more than sufficient capacity, 1.03m³/sec, to cater the existing catchment, 0.44m³/sec, as well as the additional discharge from the proposed application, 0.127m³/sec.

Figure 1 Existing Catchment Area

